621.373.826 : 621.383.6:778.37

Применение камеры К008 в диагностике ударных и детонационных волн

 В.Б. Лебедев ^a, Г.Г. Фельдман ^a, М.А. Карпов ^a, А.В. Фёдоров ^б, <u>А.В. Меньших</u> ^б, Д.В. Назаров ^б, С. А. Финюшин ^б, В.А. Давыдов ^б
^a ВНИИОФИ, Компания БИФО; ^б Институт Физики Взрыва РФЯЦ-ВНИИЭФ

Приведены результаты испытаний камеры КОО8 на устойчивость к воздействию таких факторов, сопровождающих газодинамические эксперименты, как мощные электромагнитные, акустические и световые помехи, и результаты применения камеры в составе лазерного доплеровского измерителя скорости объектов, метаемых взрывом.

Ключевые слова: взрыв, скорость, детонация, ударные волны, электронно-оптический преобразователь.

Введение

Многие научные организации в России и за рубежом занимаются изучением взрывных процессов. Большой интерес для исследователей представляют такие параметры, как скорости тел, метаемых взрывом, форма фронтов ударных и детонационных волн, упругопластические свойства конструкционных материалов и.т.д.

Перечисленные выше параметры легко получить, используя электронно-оптическую камеру, работающую, в частности, в режиме линейной развёртки, так называемом стрик режиме. «Сердцем» стрик камеры является импульсный электронно-оптический преобразователь (ЭОП), на вход которого с помощью оптической системы проецируется изображение процесса, вырезанное узкой щелью. При исследуемого подаче на ЭОП линейно отклоняющие пластины изменяющегося напряжения изображение щели разворачивается по люминесцентному экрану. При этом происходит непрерывное пространственно-временное преобразование исследуемого изображения или оптического сигнала. Полученное на выходе ЭОП изображение с помощью телевизионной камеры вводится в компьютер и обрабатывается по программе, позволяющей получить интересующие исследователя параметры.

В нашей работе в реальных условиях газодинамических экспериментов была использована электронно-оптическая камера типа К008 /1,2/. Работы проводились в Российском Федеральном Ядерном Центре Всероссийского Научно–Исследовательского Института Эспериментальной Физики (РФЯЦ-ВНИИЭФ) в составе экспериментального комплекса лазерного доплеровского измерителя скорости (ЛДИС).

Результаты испытаний и экспериментов

Камера имеет два режима работы – однокадровый и стрик режим (режим линейной развёртки). Диапазон коэффициентов линейной развёртки, обеспечиваемый двумя сменными блоками управления, составляет от 1нс/см до 300мкс/см (длина развёртки 2 см, предельное временное разрешение 20пс). При этом в однокадровом режиме диапазон длительностей кадра составляет от 10нс до 600мкс (максимальные размеры кадра 15х20 мм²). Пространственное разрешение - не менее 15 п.л./мм, спектральный диапазон – от 400 до 800 нм.

Камера без дополнительного внешнего электромагнитного экрана была установлена в непосредственной близости (~10 см) от сильноточной разрядной цепи твердотельного рубинового лазера и в 2-х метрах от взрывной камеры, в которой инициирование детонаторов производится искровым разрядом с напряжением более 30 кВ. При этом не было ни ложных запусков, ни ухудшения качества изображения.

Благодаря коррекции посредством программного обеспечения всех геометрических и фотометрических искажений, как в однокадровом режиме, так и в режиме линейной развёртки, включая светсигнальные характеристики и нелинейность развёртки, точность определения смещения интерференционных полос была в этих экспериментах существенно повышена. В результате коррекции геометрические дисторсии были уменьшены с 4%_{max} до не более 1%, а нелинейность развёртки с 10%_{max} до не

2

более 2%. Неоднородность коэффициента преобразования по полю изображения была уменьшена с 30%_{max} до не более 5%.

Было проведено более 50 газодинамических экспериментов. Были получены графики массовой скорости различных металлических пластин, метаемых взрывом (рис.1).

Рис.1. Типичная зарегистрированная интерферограмма и график массовой скорости алюминиевой пластины, метаемой взрывом.

По завершении успешных испытаний РФЯЦ-ВНИИЭФ приобрёл несколько камер КОО8. Три из них используются в измерительном комплексе РФЯЦ-ВНИИЭФ, где с помощью лазерного интерферометра Фабри-Перо проводятся исследования в области физики ударных и детонационных волн /3-5/. В частности, при выходе детонационной волны на границу раздела взрывчатое вещество (ВВ)-прозрачное окно регистрировались параметры детонации высокоплотных BB. Между BB и окном помещалась тонкая (≈10 фольга, мкм) алюминиевая которая отражала лазерное излучение. претерпевшее доплеровский сдвиг частоты за счет движения фольги. На рис. 2 представлена интерферограмма опыта и зависимость скорости границы раздела BB-окно от времени для BB - тринитротолуола (THT) (р=1,633 г/см³, D=6.93 км/с, D – скорость детонации) и окна из LiF.

Рис.2. Интерферограмма и график U(t) в опыте с ТНТ.

В опыте с ТНТ зарегистрирована величина пика массовой скорости на границе **BB-LiF** U=1.73 км/с. Используя адиабату известную непрореагировавшего тротила D=2,57+1,88U и пересчитывая состояние пика в LiF на состояние пика в ТНТ, имеем величину пика Неймана в тротиле Р =24,5 ГПа, U=2,21 км/с. Известные значения состояния Чепмена-Жуге (Ч-Ж) для тротила, полученные разными методами лежат в пределах 17,9...19,35 ГПа. Мы берем среднее значение Р =18,6 ГПа. В этом случае зарегистрированная нами величина пика Неймана превышает состояние Ч-Ж в 1,32 раза. На графике рисунка 2 спад скорости U(t) заканчивается полкой. Длительность спада U(t) составила $\Delta t = 320$ нс. Это и есть длительность зоны химической реакции, значение которой хорошо согласуется с данными других авторов /7/.

Камера КОО8 используется в лазерном измерительном комплексе и для регистрации упругопластических и прочностных свойств металлов.

На рис.3 показана типичная интерферограмма и соответствующий ей характерный профиль скорости свободной поверхности упругопластического тела при выходе на нее откольного импульса. Вследствие упругопластического поведения материала разгрузка откольного слоя носит двустадийный характер (упругий предвестник и следующая за ним пластическая волна).

4

Рис.3. Типичная интерферограмма и соответствующий ей характерный профиль скорости свободной поверхности при отколе в упругопластическом теле.

Выражения для определения откольной прочности и величины упругого предвестника в упругопластическом теле имеют вид /6/:

$$\boldsymbol{S}_{spall} = \frac{1}{2} r_0 c_0 (\Delta W + \boldsymbol{d}W) \quad (1); \quad \boldsymbol{d} \ W = \left(\frac{h}{c_0} - \frac{h}{c_l}\right) \cdot \frac{\left|\boldsymbol{W}_1^{\boldsymbol{k}} \cdot \boldsymbol{W}_2^{\boldsymbol{k}}\right|}{\left|\boldsymbol{W}_1^{\boldsymbol{k}}\right| + \boldsymbol{W}_2^{\boldsymbol{k}}} \quad (2); \quad h = \frac{\Delta t}{\left(\frac{1}{c_0} + \frac{1}{c_l}\right)} \quad (3)$$

$$\boldsymbol{S}_{HEL} = \frac{1}{2} r_0 W_{el} c_l \quad (4)$$

В формулах (1-4) приняты следующие обозначения: r_0 – плотность материала; c₀, c₁ - соответственно объемная и продольная скорость звука в материале; *S*_{HEL} – величина упругого предвестника; *S*_{spall} - откольная прочность; ΔW – разница между первым максимумом и минимумом скорости свободной поверхности откольного слоя; W_{pl} – амплитудное значение скорости пластической волны; W_{el} – амплитудное значение скорости упругой волны; $\Delta \tau$ - время действия растягивающего импульса, dW – поправка, учитывающая разницу скоростей распространения разгрузочной части падающего импульса и фронта откольного импульса; *h* – толщина откольной W_1, W_2 градиенты свободной пластины; скорости поверхности соответственно в падающей волне разрежения и во фронте откольного импульса (рис. 3).

Заключение

Таким образом, с помощью лазерного интерферометра Фабри-Перо и камеры КОО8 в одном эксперименте можно зарегистрировать следующие параметры: амплитуды скоростей упругой и пластической волн (W_{el} и W_{pl}); ΔW – разницу между первым максимумом и минимумом скорости свободной поверхности на зависимости W(t); время действия растягивающего импульса ($\Delta \tau$). Величины упругого предвестника (s_{HEL}), откольной прочности (s_{spall}) и толщины откольной пластины (h) рассчитываются из соотношений (1-4). Так, например, для железа "Armco" эти величины, полученные в эксперименте (рис. 3), составили: W_{el} =64 м/с; W_{pl} =590 м/с; s_{HEL} = 1,5 ГПа; s_{spall} = 2,67 ГПа; $\Delta \tau$ = 0,22 мкс; h = 0,58 мм.

K008 Камера В составе лазерного измерительного комплекса используется также для измерений скорости разгона лайнеров и пластин, определения метательной способности различных BB. изменения коэффициента преломления при сжатии прозрачного материала ударными волнами и т.п..

Благодаря исключительно малым габаритам и весу камера очень удобна в работе. Её легко встроить практически в любую оптическую схему уже существующих измерительных установок без усложнения их оптических схем. Она может быть легко закреплена в любом положении и практически в любом месте и большого измерительного комплекса, и маленькой установки. А удобство её переноски и транспортирования, что часто очень немаловажно, очевидно и не требует доказательств.

На рис. 4 показаны участники испытаний и камера КОО8 на стенде лабораторного ЛДИС, где она предварительно испытывалась. Для сравнения размеров камера КОО8 поставлена сверху камеры ФЭР-7, имеющей размеры типичной электронно-оптической камеры.

Рис. 4. Участники испытаний (слева направо: А. Меньших, А. Фёдоров, В. Давыдов, Д. Назаров-Институт Физики Взрыва РФЯЦ-ВНИИЭФ, В. Лебедев - ВНИИОФИ, Компания БИФО) возле ЛДИС и камер К008 и ФЭР-7.

Нужно отметить, что в сравнении с камерой КОО8 обеспечение защиты камеры ФЭР-7, разработанной во ВНИИОФИ более 35 лет назад, от ложных запусков в условиях работы в составе ЛДИС оказалось очень трудной задачей, которую удалось надёжно решить только после установки в цепь сетевого питания ФЭР-7 мощного LC фильтра, а после него разделительного сетевого трансформатора с заземлённым межобмоточным экраном.

Авторы выражают благодарность Г.М. Рейтблату за разработку программного обеспечения камеры КОО8.

Литература

1. V.B. Lebedev, G.G. Feldman, Super small single streak and single frame image converter camera, SPIE, Vol. 3516, pp. 85-91.

2. K008 Streak and Uniframe Camera, http: www.bifocompany.com

3. Fedorov A.V. et al., Detonation front in homogenous and heterogeneous HE// Proceedings of APS Conference "Shock Compression of Condensed Matter", Snowbird, USA, 1999, pp. 801- 804.

4. Fedorov A.V., Menshikh A.V., Yagodin N.B., Structure of a detonation front in heterogeneous high explosive (HE), //Chem Phys. Repots, 2000, Vol.18 (10-11), pp. 2129-2138.

5. Fedorov A.V., Menshikh A.V., Yagodin N.B., Структура детонационного фронта гетерогенных BB, Химическая Физика, № 11, 1999, pp. 64-68.

6. Lubyatinsky S.N., Loboiko B.G. Detonation reaction zones of solid explosives.

// Proceedings of XI Symposium on Detonation, Snowmass, USA, 1998, 836-844.

7. Канель Г.И., Разоренов С.В., Уткин А.В., Фортов В.Е. Ударно-волновые явления в конденсированных средах. М.: «Янус-К», 1996, стр. 408.